78 research outputs found

    A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons

    Get PDF
    Spiking neurons are becoming increasingly popular owing to their biological plausibility and promising computational properties. Unlike traditional rate-based neural models, spiking neurons encode information in the temporal patterns of the transmitted spike trains, which makes them more suitable for processing spatiotemporal information. One of the fundamental computations of spiking neurons is to transform streams of input spike trains into precisely timed firing activity. However, the existing learning methods, used to realize such computation, often result in relatively low accuracy performance and poor robustness to noise. In order to address these limitations, we propose a novel highly effective and robust membrane potential-driven supervised learning (MemPo-Learn) method, which enables the trained neurons to generate desired spike trains with higher precision, higher efficiency, and better noise robustness than the current state-of-the-art spiking neuron learning methods. While the traditional spike-driven learning methods use an error function based on the difference between the actual and desired output spike trains, the proposed MemPo-Learn method employs an error function based on the difference between the output neuron membrane potential and its firing threshold. The efficiency of the proposed learning method is further improved through the introduction of an adaptive strategy, called skip scan training strategy, that selectively identifies the time steps when to apply weight adjustment. The proposed strategy enables the MemPo-Learn method to effectively and efficiently learn the desired output spike train even when much smaller time steps are used. In addition, the learning rule of MemPo-Learn is improved further to help mitigate the impact of the input noise on the timing accuracy and reliability of the neuron firing dynamics. The proposed learning method is thoroughly evaluated on synthetic data and is further demonstrated on real-world classification tasks. Experimental results show that the proposed method can achieve high learning accuracy with a significant improvement in learning time and better robustness to different types of noise

    An Efficient Threshold-Driven Aggregate-Label Learning Algorithm for Multimodal Information Processing

    Get PDF
    The aggregate-label learning paradigm tackles the long-standing temporary credit assignment (TCA) problem in neuroscience and machine learning, enabling spiking neural networks to learn multimodal sensory clues with delayed feedback signals. However, the existing aggregate-label learning algorithms only work for single spiking neurons, and with low learning efficiency, which limit their real-world applicability. To address these limitations, we first propose an efficient threshold-driven plasticity algorithm for spiking neurons, namely ETDP. It enables spiking neurons to generate the desired number of spikes that match the magnitude of delayed feedback signals and to learn useful multimodal sensory clues embedded within spontaneous spiking activities. Furthermore, we extend the ETDP algorithm to support multi-layer spiking neural networks (SNNs), which significantly improves the applicability of aggregate-label learning algorithms. We also validate the multi-layer ETDP learning algorithm in a multimodal computation framework for audio-visual pattern recognition. Experimental results on both synthetic and realistic datasets show significant improvements in the learning efficiency and model capacity over the existing aggregate-label learning algorithms. It, therefore, provides many opportunities for solving real-world multimodal pattern recognition tasks with spiking neural networks

    ESVAE: An Efficient Spiking Variational Autoencoder with Reparameterizable Poisson Spiking Sampling

    Full text link
    In recent years, studies on image generation models of spiking neural networks (SNNs) have gained the attention of many researchers. Variational autoencoders (VAEs), as one of the most popular image generation models, have attracted a lot of work exploring their SNN implementation. Due to the constrained binary representation in SNNs, existing SNN VAE methods implicitly construct the latent space by an elaborated autoregressive network and use the network outputs as the sampling variables. However, this unspecified implicit representation of the latent space will increase the difficulty of generating high-quality images and introduces additional network parameters. In this paper, we propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution and design a reparameterizable spiking sampling method. Specifically, we construct the prior and posterior of the latent space as a Poisson distribution using the firing rate of the spiking neurons. Subsequently, we propose a reparameterizable Poisson spiking sampling method, which is free from the additional network. Comprehensive experiments have been conducted, and the experimental results show that the proposed ESVAE outperforms previous SNN VAE methods in reconstructed & generated images quality. In addition, experiments demonstrate that ESVAE's encoder is able to retain the original image information more efficiently, and the decoder is more robust. The source code is available at https://github.com/QgZhan/ESVAE.Comment: 11 pages, 13 figure

    Delayed Memory Unit: Modelling Temporal Dependency Through Delay Gate

    Full text link
    Recurrent Neural Networks (RNNs) are renowned for their adeptness in modeling temporal dependencies, a trait that has driven their widespread adoption for sequential data processing. Nevertheless, vanilla RNNs are confronted with the well-known issue of gradient vanishing and exploding, posing a significant challenge for learning and establishing long-range dependencies. Additionally, gated RNNs tend to be over-parameterized, resulting in poor network generalization. To address these challenges, we propose a novel Delayed Memory Unit (DMU) in this paper, wherein a delay line structure, coupled with delay gates, is introduced to facilitate temporal interaction and temporal credit assignment, so as to enhance the temporal modeling capabilities of vanilla RNNs. Particularly, the DMU is designed to directly distribute the input information to the optimal time instant in the future, rather than aggregating and redistributing it over time through intricate network dynamics. Our proposed DMU demonstrates superior temporal modeling capabilities across a broad range of sequential modeling tasks, utilizing considerably fewer parameters than other state-of-the-art gated RNN models in applications such as speech recognition, radar gesture recognition, ECG waveform segmentation, and permuted sequential image classification

    LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks with TTFS Coding

    Full text link
    The biological neurons use precise spike times, in addition to the spike firing rate, to communicate with each other. The time-to-first-spike (TTFS) coding is inspired by such biological observation. However, there is a lack of effective solutions for training TTFS-based spiking neural network (SNN). In this paper, we put forward a simple yet effective network conversion algorithm, which is referred to as LC-TTFS, by addressing two main problems that hinder an effective conversion from a high-performance artificial neural network (ANN) to a TTFS-based SNN. We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks, including image classification, image reconstruction, and speech enhancement. With TTFS coding, we can achieve up to orders of magnitude saving in computation over ANN and other rate-based SNNs. The study, therefore, paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms

    Feedforward computational model for pattern recognition with spiking neurons

    Get PDF
    Humans and primates are remarkably good at pattern recognition and outperform the best machine vision systems with respect to almost any measure. Building a computational model that emulates the architecture and information processing in biological neural systems has always been an attractive target. To build a computational model that closely follows the information processing and architecture of the visual cortex, in this paper, we have improved the latency-phase encoding to express the external stimuli in a more abstract manner. Moreover, inspired by recent findings in the biological neural system, including architecture, encoding, and learning theories, we have proposed a feedforward computational model of spiking neurons that emulates object recognition of the visual cortex for pattern recognition. Simulation results showed that the proposed computational model can perform pattern recognition task well. In addition, the success of this computational model suggests a plausible proof for feedforward architecture of pattern recognition in the visual cortex
    corecore